Hyperbolic Function
sinhz\sinh z =ez−e−z2= \frac{e^z - e^{-z}}{2}
coshz\cosh z =ez+e−z2= \frac{e^z + e^{-z}}{2}
tanhz\tanh z =ez−e−zez+e−z= \frac{e^z - e^{-z}}{e^z + e^{-z}}
cothz\coth z =ez+e−zez−e−z= \frac{e^z + e^{-z}}{e^z - e^{-z}}
sechz\operatorname{sech} z =2ez+e−z= \frac{2}{e^z + e^{-z}}
cschz\operatorname{csch} z =2ez−e−z= \frac{2}{e^z - e^{-z}}
Inverse Hyperbolic Function
arsinhz\operatorname{arsinh} z =Ln(z+z2+1)= \operatorname{Ln}(z + \sqrt{z^2 + 1})
arcoshz\operatorname{arcosh} z =Ln(z+z+1z−1)= \operatorname{Ln}(z + \sqrt{z + 1} \sqrt{z - 1})
artanhz\operatorname{artanh} z =12Ln(1+z1−z)= \frac{1}{2} \operatorname{Ln}(\frac{1 + z}{1 - z})
arcothz\operatorname{arcoth} z =12Ln(z+1z−1)= \frac{1}{2} \operatorname{Ln}(\frac{z + 1}{z - 1})
arsechz\operatorname{arsech} z =Ln(1z+1z+11z−1)= \operatorname{Ln}(\frac{1}{z} + \sqrt{\frac{1}{z} + 1} \sqrt{\frac{1}{z} - 1})
arcschz\operatorname{arcsch} z =Ln(1z+1z2+1)= \operatorname{Ln}(\frac{1}{z} + \sqrt{\frac{1}{z^2} + 1})
Differentiation
(sinx)′=cosx(\sin x)' = \cos x
(cosx)′=−sinx(\cos x)' = -\sin x
(tanx)′=sec2x(\tan x)' = \sec^2 x
(cotx)′=−csc2x(\cot x)' = -\csc^2 x
(secx)′=secxtanx(\sec x)' = \sec x \tan x
(cscx)′=−cscxcotx(\csc x)' = -\csc x \cot x
(sinhx)′=coshx(\sinh x)' = \cosh x
(coshx)′=sinhx(\cosh x)' = \sinh x
(tanhx)′=sech2x(\tanh x)' = \operatorname{sech}^2 x
(cothx)′=−csch2x(\coth x)' = -\operatorname{csch}^2 x
(sechx)′=−sechxtanhx(\operatorname{sech} x)' = -\operatorname{sech} x \tanh x
(cschx)′=−cschxcothx(\operatorname{csch} x)' = -\operatorname{csch} x \coth x
(arcsinx)′=11−x2(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}
(arccosx)′=−11−x2(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}
(arctanx)′=11+x2(\arctan x)' = \frac{1}{1 + x^2}
(arccotx)′=(arctan1x)′(\operatorname{arccot} x)' = (\arctan \frac{1}{x})'
(arcsecx)′=(arccos1x)′(\operatorname{arcsec} x)' = (\arccos \frac{1}{x})'
(arccscx)′=(arcsin1x)′(\operatorname{arccsc} x)' = (\arcsin \frac{1}{x})'
(arsinhx)′=1x2+1(\operatorname{arsinh} x)' = \frac{1}{\sqrt{x^2 + 1}}
(arcoshx)′=1x2−1(\operatorname{arcosh} x)' = \frac{1}{\sqrt{x^2 - 1}}
(artanhx)′=11−x2(\operatorname{artanh} x)' = \frac{1}{1 - x^2}
(arcothx)′=(artanh1x)′(\operatorname{arcoth} x)' = (\operatorname{artanh} \frac{1}{x})'
(arsechx)′=(arcosh1x)′(\operatorname{arsech} x)' = (\operatorname{arcosh} \frac{1}{x})'
(arcschx)′=(arsinh1x)′(\operatorname{arcsch} x)' = (\operatorname{arsinh} \frac{1}{x})'
Integration
∫sinx dx=−cosx+C\int \sin x \ dx = -\cos x + C
∫cosx dx=sinx+C\int \cos x \ dx = \sin x + C
∫tanx dx=−ln∣cosx∣+C\int \tan x \ dx = -\ln |\cos x| + C
∫cotx dx=ln∣sinx∣+C\int \cot x \ dx = \ln |\sin x| + C
∫secx dx=ln∣secx+tanx∣+C\int \sec x \ dx = \ln |\sec x + \tan x| + C
∫cscx dx=−ln∣cscx+cotx∣+C\int \csc x \ dx = -\ln |\csc x + \cot x| + C
∫sinhx dx=coshx+C\int \sinh x \ dx = \cosh x + C
∫coshx dx=sinhx+C\int \cosh x \ dx = \sinh x + C
∫tanhx dx=ln(coshx)+C\int \tanh x \ dx = \ln(\cosh x) + C
∫cothx dx=ln∣sinhx∣+C\int \coth x \ dx = \ln|\sinh x| + C
∫sechx dx=arctan(sinhx)+C\int \operatorname{sech} x \ dx = \arctan(\sinh x) + C
∫cschx dx=−ln∣cschx+cothx∣+C\int \operatorname{csch} x \ dx = -\ln|\operatorname{csch} x + \coth x| + C
∫arcsinx dx=xarcsinx+1−x2+C\int \arcsin x \ dx = x \arcsin x + \sqrt{1 - x^2} + C
∫arccosx dx=xarccosx−1−x2+C\int \arccos x \ dx = x \arccos x - \sqrt{1 - x^2} + C
∫arctanx dx=xarctanx−12ln(1+x2)+C\int \arctan x \ dx = x \arctan x - \frac{1}{2} \ln(1 + x^2) + C
∫arccotx dx=xarccotx+12ln(1+x2)+C\int \operatorname{arccot} x \ dx = x \operatorname{arccot} x + \frac{1}{2} \ln(1 + x^2) + C
∫arcsecx dx=xarcsecx−arcosh∣x∣+C\int \operatorname{arcsec} x \ dx = x \operatorname{arcsec} x - \operatorname{arcosh} |x| + C
∫arccscx dx=xarccscx+arcosh∣x∣+C\int \operatorname{arccsc} x \ dx = x \operatorname{arccsc} x + \operatorname{arcosh} |x| + C
∫arsinhx dx=xarsinhx−x2+1+C\int \operatorname{arsinh} x \ dx = x \operatorname{arsinh} x - \sqrt{x^2 + 1} + C
∫arcoshx dx=xarcoshx−x2−1+C\int \operatorname{arcosh} x \ dx = x \operatorname{arcosh} x - \sqrt{x^2 - 1} + C
∫artanhx dx=xartanhx+12ln(1−x2)+C\int \operatorname{artanh} x \ dx = x \operatorname{artanh} x + \frac{1}{2} \ln(1 - x^2) + C
∫arcothx dx=xarcothx+12ln(x2−1)+C\int \operatorname{arcoth} x \ dx = x \operatorname{arcoth} x + \frac{1}{2} \ln(x^2 - 1) + C
∫arsechx dx=xarsechx+arcsinx+C\int \operatorname{arsech} x \ dx = x \operatorname{arsech} x + \arcsin x + C
∫arcschx dx=xarcschx+arsinh∣x∣+C\int \operatorname{arcsch} x \ dx = x \operatorname{arcsch} x + \operatorname{arsinh} |x| + C