Trigonometric Function

Hyperbolic Function

sinhz=ezez2=isiniz\sinh z = \frac{e^z - e^{-z}}{2} = -i \sin iz

coshz=ez+ez2=cosiz\cosh z = \frac{e^z + e^{-z}}{2} = \cos iz

tanhz=ezezez+ez=itaniz\tanh z = \frac{e^z - e^{-z}}{e^z + e^{-z}} = -i \tan iz

cothz=ez+ezezez=icotiz\coth z = \frac{e^z + e^{-z}}{e^z - e^{-z}} = i \cot iz

sechz=2ez+ez=seciz\operatorname{sech} z = \frac{2}{e^z + e^{-z}} = \sec iz

cschz=2ezez=icsciz\operatorname{csch} z = \frac{2}{e^z - e^{-z}} = i \csc iz

Inverse Hyperbolic Function

arsinhz=Ln(z+z2+1)\operatorname{arsinh} z = \operatorname{Ln}(z + \sqrt{z^2 + 1})

arcoshz=Ln(z+z+1z1)\operatorname{arcosh} z = \operatorname{Ln}(z + \sqrt{z + 1} \sqrt{z - 1})

artanhz=12Ln(1+z1z)\operatorname{artanh} z = \frac{1}{2} \operatorname{Ln}(\frac{1 + z}{1 - z})

arcothz=12Ln(z+1z1)\operatorname{arcoth} z = \frac{1}{2} \operatorname{Ln}(\frac{z + 1}{z - 1})

arsechz=Ln(1z+1z+11z1)\operatorname{arsech} z = \operatorname{Ln}(\frac{1}{z} + \sqrt{\frac{1}{z} + 1} \sqrt{\frac{1}{z} - 1})

arcschz=Ln(1z+1z2+1)\operatorname{arcsch} z = \operatorname{Ln}(\frac{1}{z} + \sqrt{\frac{1}{z^2} + 1})

Differentiation

(sinx)=cosx(\sin x)' = \cos x

(cosx)=sinx(\cos x)' = -\sin x

(tanx)=sec2x(\tan x)' = \sec^2 x

(cotx)=csc2x(\cot x)' = -\csc^2 x

(secx)=secxtanx(\sec x)' = \sec x \tan x

(cscx)=cscxcotx(\csc x)' = -\csc x \cot x

(sinhx)=coshx(\sinh x)' = \cosh x

(coshx)=sinhx(\cosh x)' = \sinh x

(tanhx)=sech2x(\tanh x)' = \operatorname{sech}^2 x

(cothx)=csch2x(\coth x)' = -\operatorname{csch}^2 x

(sechx)=sechxtanhx(\operatorname{sech} x)' = -\operatorname{sech} x \tanh x

(cschx)=cschxcothx(\operatorname{csch} x)' = -\operatorname{csch} x \coth x

(arcsinx)=11x2(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}

(arccosx)=11x2(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}

(arctanx)=11+x2(\arctan x)' = \frac{1}{1 + x^2}

(arccotx)=11+x2(\operatorname{arccot} x)' = -\frac{1}{1 + x^2}

(arcsecx)=1xx21(\operatorname{arcsec} x)' = \frac{1}{|x| \sqrt{x^2 - 1}}

(arccscx)=1xx21(\operatorname{arccsc} x)' = -\frac{1}{|x| \sqrt{x^2 - 1}}

(arsinhx)=1x2+1(\operatorname{arsinh} x)' = \frac{1}{\sqrt{x^2 + 1}}

(arcoshx)=1x21(\operatorname{arcosh} x)' = \frac{1}{\sqrt{x^2 - 1}}

(artanhx)=11x2(\operatorname{artanh} x)' = \frac{1}{1 - x^2}

(arcothx)=11x2(\operatorname{arcoth} x)' = \frac{1}{1 - x^2}

(arsechx)=1x1x2(\operatorname{arsech} x)' = -\frac{1}{x \sqrt{1 - x^2}}

(arcschx)=1x1+x2(\operatorname{arcsch} x)' = -\frac{1}{|x| \sqrt{1 + x^2}}

Integration

sinx dx=cosx+C\int \sin x \ dx = -\cos x + C

cosx dx=sinx+C\int \cos x \ dx = \sin x + C

tanx dx=lncosx+C\int \tan x \ dx = -\ln |\cos x| + C

cotx dx=lnsinx+C\int \cot x \ dx = \ln |\sin x| + C

secx dx=lnsecx+tanx+C\int \sec x \ dx = \ln |\sec x + \tan x| + C

cscx dx=lncscx+cotx+C\int \csc x \ dx = -\ln |\csc x + \cot x| + C

sinhx dx=coshx+C\int \sinh x \ dx = \cosh x + C

coshx dx=sinhx+C\int \cosh x \ dx = \sinh x + C

tanhx dx=ln(coshx)+C\int \tanh x \ dx = \ln(\cosh x) + C

cothx dx=lnsinhx+C\int \coth x \ dx = \ln|\sinh x| + C

sechx dx=arctan(sinhx)+C\int \operatorname{sech} x \ dx = \arctan(\sinh x) + C

cschx dx=lncschx+cothx+C\int \operatorname{csch} x \ dx = -\ln|\operatorname{csch} x + \coth x| + C

arcsinx dx=xarcsinx+1x2+C\int \arcsin x \ dx = x \arcsin x + \sqrt{1 - x^2} + C

arccosx dx=xarccosx1x2+C\int \arccos x \ dx = x \arccos x - \sqrt{1 - x^2} + C

arctanx dx=xarctanx12ln(1+x2)+C\int \arctan x \ dx = x \arctan x - \frac{1}{2} \ln(1 + x^2) + C

arccotx dx=xarccotx+12ln(1+x2)+C\int \operatorname{arccot} x \ dx = x \operatorname{arccot} x + \frac{1}{2} \ln(1 + x^2) + C

arcsecx dx=xarcsecxarcoshx+C\int \operatorname{arcsec} x \ dx = x \operatorname{arcsec} x - \operatorname{arcosh} |x| + C

arccscx dx=xarccscx+arcoshx+C\int \operatorname{arccsc} x \ dx = x \operatorname{arccsc} x + \operatorname{arcosh} |x| + C

arsinhx dx=xarsinhxx2+1+C\int \operatorname{arsinh} x \ dx = x \operatorname{arsinh} x - \sqrt{x^2 + 1} + C

arcoshx dx=xarcoshxx21+C\int \operatorname{arcosh} x \ dx = x \operatorname{arcosh} x - \sqrt{x^2 - 1} + C

artanhx dx=xartanhx+12ln(1x2)+C\int \operatorname{artanh} x \ dx = x \operatorname{artanh} x + \frac{1}{2} \ln(1 - x^2) + C

arcothx dx=xarcothx+12ln(x21)+C\int \operatorname{arcoth} x \ dx = x \operatorname{arcoth} x + \frac{1}{2} \ln(x^2 - 1) + C

arsechx dx=xarsechx+arcsinx+C\int \operatorname{arsech} x \ dx = x \operatorname{arsech} x + \arcsin x + C

arcschx dx=xarcschx+arsinhx+C\int \operatorname{arcsch} x \ dx = x \operatorname{arcsch} x + \operatorname{arsinh} |x| + C